4.6 Article

Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches

Journal

PHYSICAL REVIEW B
Volume 71, Issue 19, Pages -

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevB.71.195301

Keywords

-

Funding

  1. Engineering and Physical Sciences Research Council [EP/D030242/1, GR/S41111/01] Funding Source: researchfish

Ask authors/readers for more resources

A semi-classical Monte Carlo model for studying three-dimensional carrier dynamics in photoconductive switches is presented. The model was used to simulate the process of photoexcitation in GaAs-based photoconductive antennas illuminated with pulses typical of mode-locked Ti:Sapphire lasers, We analyzed the power and frequency bandwidth of THz radiation emitted from these devices as a function of bias voltage. pump pulse duration and pump pulse location. We show that the mechanisms limiting the THz power emitted from photoconductive switches fall into two regimes: when illuminated with short duration (< 40 fs) laser pulses the energy distribution of the Gaussian pulses constrains the emitted power. while for long (> 40 fs) pulses, screening is the primary power-limiting mechanism. A discussion of the dynamics of bias field screening in the gap region is presented, The emitted terahertz power was found to be enhanced when the exciting laser pulse was in close proximity to the anode of the photoconductive emitter, in agreement with experimental results, We show that this enhancement arises from the electric field distribution within the emitter combined with a difference in the mobilities of electrons and holes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available