4.7 Article

Local magnetization transfer ratio signal inhomogeneity is related to subsequent change in MTR in lesions and normal-appearing white-matter of multiple sclerosis patients

Journal

NEUROIMAGE
Volume 25, Issue 4, Pages 1272-1278

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2004.12.046

Keywords

multiple sclerosis; magnetic resonance imaging; image processing; computer assisted; myelin; magnetization transfer imaging

Ask authors/readers for more resources

Multiple sclerosis (MS) lesions show differing degrees of demyelination and remyclination. Changes in myelin content are associated with changes in magnetization transfer (in MRI. Since acute inflammation and demyelination are spatially and temporally inhomogeneous, we hypothesized that local magnetic transfer ratio (MTR) heterogeneity might be predictive of subsequent changes in MTR. To test this hypothesis, we analyzed MTR images obtained in 14 subjects, at baseline and after 2 months follow-up. We segmented lesions and normal-appearing white-matter (NAWM), calculated MTR signal inhomogeneity maps at baseline and MTR lesion difference maps between baseline and follow-up. We found that regions with low MTR inhomogeneity at baseline experienced little further change in MTR on follow-up. The mean change in lesion MTR between baseline and follow-up was 0.10 +/- 3.70; in NAWM it was -0.09 +/- 2.02. We found that regions with high MTR inhomogeneity at baseline would change MTR on follow-up: (1) voxels with significantly high MTR in regions of high MTR inhomogeneity at baseline showed a mean decrease in MTR between baseline and follow-up of -2.51 +/- 4.68 in lesions and - 1.41 +/- 3.00 in NAWM; (2) voxels with low MTR in regions of high MTR inhomogeneity at baseline showed a mean increase in MTR between baseline and follow-up of 2.61 +/- 6.07 in lesions. These changes in MTR were significantly different (P < 0.001). These results suggest that calculation of MTR signal inhomogeneity may provide a method for quantifying the potential for remyelination and demyelination, and thus could provide an important MRI biomarker for assessing the efficacy of therapies targeting remyelination. (c) 2004 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available