4.4 Article Proceedings Paper

Magnetically driven isentropic compression to multimegabar pressures using shaped current pulses on the Z accelerator

Journal

PHYSICS OF PLASMAS
Volume 12, Issue 5, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.1871954

Keywords

-

Ask authors/readers for more resources

A technique has previously been developed on the Z accelerator [R. B. Spielman , Phys. Plasmas 5, 2105 (1998)] to generate ramped compression waves in condensed matter for equation-of-state studies [C. A. Hall, J. R. Asay, M. D. Knudson, W. A. Stygar, R. B. Spielman, T. D. Pointon, D. B. Reisman, A. Toor, and R. C. Cauble, Rev. Sci. Instrum. 72, 3587 (2001)] by using the Lorentz force to push on solid electrodes rather than to drive a Z pinch. This technique has now been extended to multimegabar pressures by shaping the current pulse on Z to significantly increase the sample thickness through which the compression wave can propagate without forming a shock. Shockless, free-surface velocity measurements from multiple sample thicknesses on a single experiment can be analyzed using a backward integration technique [D. B. Hayes, C. A. Hall, J. R. Asay, and M. D. Knudson, J. Appl. Phys. 94, 2331 (2003)] to extract an isentropic loading curve. At very high pressures, the accuracy of this method is dominated by relative uncertainty in the transit time between two thicknesses. This paper discusses in some detail the issues involved with accurate measurement of a multimegabar isentrope, including experiment design trade-offs and mechanics of pulse shaping on Z. (c) 2005 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available