4.5 Article

Effects of non-contractile inclusions on mechanical performance of skeletal muscle

Journal

JOURNAL OF BIOMECHANICS
Volume 38, Issue 5, Pages 1035-1043

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2004.05.040

Keywords

lateral force transmission; muscle mechanics; GSDII; finite element model; intracellular inclusion

Ask authors/readers for more resources

Glycogen storage disease 11 is an inherited progressive muscular disease in which the lack of functional acid 1-4 alpha-glucosidase results in the accumulation of lysosomal glycogen. In the present study, we examine the effect of these non-contractile inclusions on the mechanical performance of skeletal muscle. To this end, force developed in an isometrically contracting slice of a muscle was calculated with a finite element model. Force was calculated at several inclusion densities and distributions and compared to muscle lacking inclusions. Furthermore, ankle dorsal flexor torque was measured in situ of alpha-glucosidase null mice of 6 months of age and unaffected litter mates as was inclusion density in the dorsal flexor muscles. The calculated force loss was shown to be almost exclusively dependent on the inclusion density and less on the type of inclusion distribution. The force loss predicted by the model (6%) on the basis of measured inclusion density (3.3%) corresponded to the loss in mass-normalized strength in these mice measured in situ (7%). Therefore, we conclude that the mechanical interaction between the non-contractile inclusions and the nearby myofibrils is a key factor in the loss of force per unit muscle mass during early stages of GSD II in mice. As glycogen accumulation reaches higher levels in humans, it is highly probable that the impact of this mechanical interaction is even more severe in human skeletal muscle. (c) 2004 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available