4.6 Article

Partially and fully β-brominated Mn-porphyrins in P450 biomimetic systems:: Effects of the degree of bromination on electrochemical and catalytic properties

Journal

JOURNAL OF INORGANIC BIOCHEMISTRY
Volume 99, Issue 5, Pages 1193-1204

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jinorgbio.2005.02.019

Keywords

manganese porphyrins; beta-halogenated porphyrins; iodosylbenzene; biomimetic catalysis

Ask authors/readers for more resources

beta-Hexabromo-5,10,15,20-tetrakis(4-carbomethoxyphenyl)porphyrinatomanganese(III) chloride (Mn(III)(Br6TCMPP)Cl) was prepared by selective Br-2-hexabromation of its parent non-brominated manganese complex (Mn(III)(TCMPP)Cl), whereas the octabrominated analogue beta-octabromo-5,10,15,20-tetrakis(4-carbomethoxyphenyl)porphyrinatomanganese(III) chloride (Mn(III) (Br8TCMPP)Cl) was synthesized via metallation of the corresponding free-base. beta-Octabromo-5,10,15,20-tetrakis(4-carbomethoxyphenyl)porphyrin was obtained by demetallation of its brominated Cu(II) derivative, which, in its turn, was prepared by either a Br-2 or an N-bromosuccinimide protocol. Relative to Mn(III)(TCMPP)Cl (E-1/2 = -0.16 V vs. normal hydrogen electrode, CH2Cl2), the Mn(III)/Mn(II) reduction potential of Mn(III)(Br8TCMPP)Cl and Mn(III)(Br6TCMPP)Cl showed anodic shifts of 0.43 and 0.33 V, respectively, which corresponded to a linear shift of 0.05 V per bromine added. These manganese complexes were evaluated as cytochrome P450 mimics in catalytic iodosylbenzene (PhIO)-oxidations of cyclohexane and cyclohexene. In aerobic PhIO-oxidation of cyclohexene, epoxidation and allylic autoxidation reactions were inversely related, competitive processes; the most efficient P450-mimics were the least effective autoxidation catalysts. Mn(III)(Br6TCMPP)Cl was more efficient as epoxidation or hydroxylation catalyst than both its fully and non-p-brominated counterparts were. There was no linear relationship between the catalytic efficiency and both the number of bromine substituents and the Mn(III)/Mn(II) potential; these observations were compared to Lyons system literature data and discussed. Analogously to enzymatic optimum pH effects, an optimum redox potential effect is suggested as relevant in designing and understanding cytochrome P450 biomimetic catalysts. (c) 2005 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available