4.7 Article

Numerical simulation of cavitation around a two-dimensional hydrofoil using VOF method and LES turbulence model

Journal

APPLIED MATHEMATICAL MODELLING
Volume 37, Issue 9, Pages 6469-6488

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.apm.2012.09.002

Keywords

Clark-Y hydrofoil; Cloud cavitation; Supercavitation; LES; VOF; Mass transfer model

Ask authors/readers for more resources

In this paper simulation of cavitating flow over the Clark-Y hydrofoil is reported using the large eddy simulation (LES) turbulence model and volume of fluid (VOF) technique. We applied an incompressible LES modelling approach based on an implicit method for the subgrid terms. To apply the cavitation model, the flow has been considered as a single fluid, two-phase mixture. A transport equation model for the local volume fraction of vapour is solved and a finite rate mass transfer model is used for the vapourization and condensation processes. A compressive volume of fluid (VOF) method is applied to track the interface of liquid and vapour phases. This simulation is performed using a finite volume, two phase solver available in the framework of the OpenFOAM (Open Field Operation and Manipulation) software package. Simulation is performed for the cloud and super-cavitation regimes, i.e., sigma = 0.8, 0.4, 0.28. We compared the results of two different mass transfer models, namely Kunz and Sauer models. The results of our simulation are compared for cavitation dynamics, starting point of cavitation, cavity's diameter and force coefficients with the experimental data, where available. For both of steady state and transient conditions, suitable accuracy has been observed for cavitation dynamics and force coefficients. (C) 2012 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available