4.7 Article

Self-stresses and crack formation by particle swelling in cohesive granular media

Journal

PHYSICAL REVIEW E
Volume 71, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.71.051307

Keywords

-

Ask authors/readers for more resources

We present a molecular-dynamics study of force patterns, tensile strength, and crack formation in a cohesive granular model where the particles are subjected to swelling or shrinkage gradients. Nonuniform particle size change generates self-equilibrated forces that lead to crack initiation as soon as the strongest tensile contacts begin to fail. We find that the tensile strength is well below the theoretical strength as a result of inhomogeneous force transmission in granular media. The cracks propagate either inward from the edge upon shrinkage or outward from the center upon swelling. We show that the coarse-grained stresses are correctly predicted by an elastic model that incorporates particle size change as metric evolution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available