4.7 Article

A computational matrix method for solving systems of high order fractional differential equations

Journal

APPLIED MATHEMATICAL MODELLING
Volume 37, Issue 6, Pages 4035-4050

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.apm.2012.08.009

Keywords

Systems of fractional differential equations; Caputo fractional derivatives; Chebyshev polynomials; Computational matrix method

Ask authors/readers for more resources

In this paper, we introduced an accurate computational matrix method for solving systems of high order fractional differential equations. The proposed method is based on the derived relation between the Chebyshev coefficient matrix A of the truncated Chebyshev solution u(t) and the Chebyshev coefficient matrix A((nu)) of the fractional derivative u((nu)). The fractional derivatives are presented in terms of Caputo sense. The matrix method for the approximate solution for the systems of high order fractional differential equations (FDEs) in terms of Chebyshev collocation points is presented. The systems of FDEs and their conditions (initial or boundary) are transformed to matrix equations, which corresponds to system of algebraic equations with unknown Chebyshev coefficients. The remaining set of algebraic equations is solved numerically to yield the Chebyshev coefficients. Several numerical examples for real problems are provided to confirm the accuracy and effectiveness of the present method. (C) 2012 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available