4.3 Article

Changes in histone modifications during in vitro maturation of porcine oocytes

Journal

MOLECULAR REPRODUCTION AND DEVELOPMENT
Volume 71, Issue 1, Pages 123-128

Publisher

WILEY
DOI: 10.1002/mrd.20288

Keywords

acetylation; phosphorylation; histone code; immunocytochemistry

Ask authors/readers for more resources

Nuclear core histone modifications influence chromosome structures and functions. Recently, the involvement of histone acetylations in the cell memory of gene expression has been suggested in mouse oocyte maturation. At present, there is little available data on histone modifications in mammalian oocyte maturation. In the present study, we examined changes in the acetylation of histone H3 lysines 9 (H3K9) and 14 (H3K14), and histone H4 lysines 5 (H4K5), 8 (H4K8) and 12 (H4K12), and trimethylation of H3K9 during in vitro maturation of porcine oocytes. Immunocytochernical analyses revealed that the all of the lysines examined were highly acetylated in the germinal vesicle stage, and this level of acetylation was maintained until the first prometaphase. In the first metaphase, the lysines near the N-terminal end, H3K9 and H4K5, were completely deacetylated. The acetylation of the lysines far from the N-terminal end, H2K14, H4K8, and H4K12, was markedly decreased but still present. The acetylations were increased transiently at the first anaphase and telophase, and then decreased again at the second metaphase to the same level as the first metaphase. Since effective concentrations of trichostatin A (TSA) to inhibit the deacetylation were different in various lysine residues, multiple histone deacetylases (HDACs) were suggested to function during meiotic maturation. The trimethylation of H3K9 was maintained in a high level throughout maturation. These results suggest that the histone acetylation during porcine oocyte maturation is precisely controlled by the cell cycle. (c) 2005 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available