4.5 Article

Habitat corridors function as both drift fences and movement conduits for dispersing flies

Journal

OECOLOGIA
Volume 143, Issue 4, Pages 645-651

Publisher

SPRINGER
DOI: 10.1007/s00442-005-0023-6

Keywords

-

Categories

Ask authors/readers for more resources

Corridors connect otherwise isolated habitat patches and can direct movement of animals among such patches. In eight experimental landscapes, we tested two hypotheses of how corridors might affect dispersal behavior. The Traditional Corridor hypothesis posits that animals preferentially leave patches via corridors, following them into adjacent patches. The Drift Fence hypothesis posits that animals dispersing through matrix habitat are diverted into patches with corridors because they follow corridors when encountered. House flies (Musca domestica L.), a species that prefers the habitat of our patches and corridors, were released in a central patch (100x100 m) and recaptured in peripheral patches that were or were not connected by a corridor. Flies were captured more frequently in connected than unconnected patches.. thereby supporting the Traditional Corridor hypothesis. The Drift Fence hypothesis was also supported, as flies were captured more frequently in unconnected patches with blind (dead end) corridors than in unconnected patches of equal area without blind corridors. A second experiment tested whether these results might be dependent on the type of patch-matrix boundary encountered by dispersing flies and whether edge-following behavior might be the mechanism underlying the observed corridor effect ill the first experiment. We recorded dispersal patterns of flies released along forest edges with dense undergrowth in the forest (closed edges) and along edges with little forest understory (open edges). Flies were less likely to cross and more likely to follow closed edges than open edges, indicating that when patch and corridor edges are pronounced, edge-following behavior of flies may direct them along corridors into connected patches. Because edges in the first experiment were open, these results also suggest that corridor effects for flies in that experiment would have been even stronger if the edges around the source patches and corridors had been more closed. Taken together, our results suggest that corridors can affect dispersal of organisms in unappreciated ways (i.e., as drift fences) and that edge type can alter dispersal behavior.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available