4.4 Article

Finger and face representations in the ipsilateral precentral motor areas in humans

Journal

JOURNAL OF NEUROPHYSIOLOGY
Volume 93, Issue 5, Pages 2950-2958

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00784.2004

Keywords

-

Funding

  1. Intramural NIH HHS [Z99 NS999999] Funding Source: Medline

Ask authors/readers for more resources

Several human neuroimaging studies have reported activity in the precentral gyrus (PcG) ipsilateral to the side of hand movements. This activity has been interpreted as the part of the primary motor cortex (M1) that controls bilateral or ipsilateral hand movements. To better understand hand ipsilateral-PcG activity, we performed a functional MRI experiment in eight healthy right-handed adults. Behavioral tasks involved hand or lower face movements on each side or motor imagery of the same movements. Consistent with the known M1 organization, the hand contralateral-PcG activity was centered at the hand-knob portion of the PcG; face contralateral-PcG activity was localized ventrolateral to it. Hand ipsilateral-PcG activity was identified in most subjects. However, converging results indicated that this ipsilateral PcG activity was situated in Brodmann's area 6 in both hemispheres. The hand ipsilateral-PcG zones were active not only during hand movements but also face movements. Moreover, the hand ipsilateral-PcG zones revealed substantial imagery-related activity, which also failed to differentiate the hand and face. Statistical analyses confirmed poor effector selectivity of the hand ipsilateral PcG activity during both movement and imagery tasks. From these results, we conclude that the hand ipsilateral-PcG activity in healthy adults probably corresponds to a part of the ventral premotor cortex. In contrast, available evidence suggests that M1 contributes to controlling the ipsilateral hand in children and patients after stroke recovery. It appears that within the human PcG, there are two parallel systems potentially capable of controlling ipsilateral hand movements: ventral premotor cortex and M1. These two systems may be differentially influenced by developmental or pathologic changes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available