3.9 Article

Substrate preference is altered by mutations in the fifth transmembrane domain of Ptr2p, the di/tri-peptide transporter of Saccharomyces cerevisiae

Journal

MOLECULAR MEMBRANE BIOLOGY
Volume 22, Issue 3, Pages 215-227

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/09687860500093248

Keywords

peptide transport; Saccharomyces cerevisiae; site-directed mutagenesis; substrate preference

Ask authors/readers for more resources

The integral membrane protein Ptr2p transports di/tri-peptides into the yeast Saccharomyces cerevisiae. The sequence FYXXINXG (FYING motif) in the 5th transmembrane domain (TM5) is invariably conserved among the members of the PTR ( Peptide TRansport) family ranging from yeast to human. To test the role of TM5 in Ptr2p function, Ala-scanning mutagenesis of the 22 residues comprising TM5 was completed. All mutated transporters, with the exception of the Y248A mutant, were expressed as determined by immunoblots. In peptide-dependent growth assays, ten mutants of the non-FYING residues grew as well as wild-type Ptr2p on all twelve different peptides tested. All of the FYING motif mutants, except the non-expressed Y248A, plus seven other mutants in TM5 exhibited differential growth on peptides including Leu-Leu and Met-Met-Met indicating that these mutations conferred substrate preference. In assays measuring direct uptake of the radioactive peptides H-3-Leu-Leu or C-14-Met-Met-Met, the F, I and G mutants of the FYING motif did not demonstrate accumulation of these peptides over a ten minute interval. The mutation N252A of the FYING motif, along with L240A, M250A, and L258A, exhibited differential substrate preference for Met-Met-Met over Leu-Leu. Other mutations (T239A, Q241A, N242A, M245A, and A260) resulted in preference for Leu-Leu over Met-Met-Met. These data demonstrate that TM5, in particular its conserved FYING motif, is involved in substrate preference of Ptr2p.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available