4.7 Article

Homoclinic bifurcation and chaos control in MEMS resonators

Journal

APPLIED MATHEMATICAL MODELLING
Volume 35, Issue 12, Pages 5533-5552

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.apm.2011.05.021

Keywords

MEMS resonator; Melnikov method; Bifurcation; Time-varying stiffness; Control

Ask authors/readers for more resources

The chaotic dynamics of a micromechanical resonator with electrostatic forces on both sides are investigated. Using the Melnikov function, an analytical criterion for homoclinic chaos in the form of an inequality is written in terms of the system parameters. Detailed numerical studies including basin of attraction, and bifurcation diagram confirm the analytical prediction and reveal the effect of parametric excitation amplitude on the system transition to chaos. The main result of this paper indicates that it is possible to reduce the electrostatically induced homoclinic and heteroclinic chaos for a range of values of the amplitude and the frequency of the parametric excitation. Different active controllers are applied to suppress the vibration of the micromechanical resonator system. Moreover, a time-varying stiffness is introduced to control the chaotic motion of the considered system. The techniques of phase portraits, time history, and Poincare maps are applied to analyze the periodic and chaotic motions. (C) 2011 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available