4.3 Article

Calcium dynamics in dendritic spines, modeling and experiments

Journal

CELL CALCIUM
Volume 37, Issue 5, Pages 467-475

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ceca.2005.01.015

Keywords

calcium dynamics; dendritic spines; synaptic activity

Categories

Ask authors/readers for more resources

Dendritic spines are microstructures, about one femtoliter in volume, where excitatory synapses are made with incoming afferents, in most neurons of the vertebrate brain. The spine contains all the molecular constituents of the postsynaptic side of the synapse, as well as a contractile element that can cause its movement in space. It also contains calcium handling machineries to allow fast buffering of excess calcium that influx through voltage and NMDA gated channels. The spine is connected to the dendrite through a thin neck that serves as a variable barrier between the spine head and the parent dendrite. We review a novel modeling approach that is more suitable for the accurate description of the stochastic behavior of individual molecules in microstructures. Using this approach, we predict the calcium handling ability of the spine in complex situations associated with synaptic activity, spine motility and plasticity. (c) 2005 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available