4.7 Article

Investigating the mechanism for the formation of nitrous oxide [N2O(X1Σ+)] in extraterrestrial ices

Journal

ASTROPHYSICAL JOURNAL
Volume 624, Issue 1, Pages 436-447

Publisher

IOP PUBLISHING LTD
DOI: 10.1086/428933

Keywords

astrochemistry; infrared : ISM; infrared : solar system; ISM : abundances; ISM : molecules; molecular processes

Ask authors/readers for more resources

The formation of nitrous oxide, N2O(X-1 Sigma(+)), in interstellar space and in ices on Pluto and Triton has been experimentally investigated. A molecular nitrogen (N-2) and carbon dioxide (CO2) ice mixture was irradiated at 10 K with 5 keV electrons to simulate the electronic interaction effects of Galactic cosmic-ray bombardment of extraterrestrial ice samples over a time of 5 x 10(6) yr. By monitoring the experiment with a Fourier transform infrared spectrometer on line and in situ, the temporal evolution of the 2235 cm(-1) absorption band of nitrous oxide was found to follow pseudo-first-order kinetics. This indicates that the mechanism of formation is most likely a reaction between ground-state molecular nitrogen, N-2(X-1 Sigma(+)(g)), and an oxygen atom, either in the ground state (P-3) or in the first electronically excited state (D-1), within the matrix cage through an addition of the oxygen atom to a non-bonding electron pair on the nitrogen molecule. The observation of nitrous oxide together with the kinetics and dynamics studies investigated in this paper underline the role of nonequilibrium processes in low-temperature ice matrices, aid in the understanding of chemical reaction pathways that exist in extraterrestrial ices, and assist a prospective identification of nitrous oxide on the surfaces of Pluto and Triton.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available