4.7 Article

Probabilistic nonlinear analysis of CFR dams by MCS using Response Surface Method

Journal

APPLIED MATHEMATICAL MODELLING
Volume 35, Issue 6, Pages 2752-2770

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.apm.2010.12.003

Keywords

Concrete-faced rockfill dam; Friction contact; Materially nonlinearity; Monte Carlo Simulation; Probabilistic analysis; Response Surface Method

Ask authors/readers for more resources

This paper presents the probabilistic analysis of concrete-faced rockfill (CFR) dams according to the Monte Carlo Simulation (MCS) results which are obtained through the Response Surface Method (RSM). ANSYS finite element program is used to get displacement and principal stress components. First of all, some parametric studies are performed according to the simple and representative finite element model of dam body to obtain the optimum approximate model. Secondly, a sensitivity analysis is performed to get the most effective parameters on dam response. Then. RSM is used to obtain the approximate function through the selected parameters. After the performed analyses, star experimental design with quadratic function without mixed terms according to the k = 1 is determined as the most appropriate model. Finally, dam-foundation-reservoir interaction finite element model is constituted and probabilistic analyses are performed with MCS using the selected parameters, sampling method, function and arbitrary factor under gravity load for empty and full reservoir conditions. Geometrically and materially nonlinearity are considered in the analysis of dam-foundation-reservoir interaction system. Reservoir water is modeled by fluid finite elements based on the Lagrangian approach. Structural connections are modeled as welded contact and friction contact based on Coulomb's friction law. Probabilistic displacements and stresses are presented and compared with deterministic results. (C) 2010 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available