4.6 Article

Trauma-hemorrhagic shock mesenteric lymph from rat contains a modified form of albumin that is implicated in endothelial cell toxicity

Journal

SHOCK
Volume 23, Issue 5, Pages 417-425

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/01.shk.0000160524.14235.6c

Keywords

lymphatics; cytotoxicity; albumin; trauma; hemorrhagic shock; HUVECs

Funding

  1. NIGMS NIH HHS [GM59841] Funding Source: Medline

Ask authors/readers for more resources

It has been proposed that factors originating from the gut after severe trauma/shock are introduced into the systemic circulation through the mesenteric lymphatics and are responsible for the cellular injury and inflammation that culminates in acute multiple organ dysfunction syndrome (MODS). Indeed, it has been shown that lymph collected from shocked but not sham-shocked animals causes endothelial cell death, neutrophil activation, and bone marrow (BM) colony growth suppression in vitro. In an attempt to isolate the factor(s) in lymph responsible for endothelial cell toxicity, lymph from shock and sham animals was fractionated by solid phase extraction (SPE) and ion exchange chromatography (IEX). The separation of shock lymph by both methodologies yielded two fractions having major detectable toxicity to endothelial cells, whereas no toxicity was detected from sham lymph separations by either method. Subsequent analysis of each SPE toxic fraction by gel electrophoresis and mass spectrometry suggests the toxicity is associated with a modified form of rat serum albumin (mod-RSA) and multiple lipid-based factors. Therefore, we have been able to demonstrate by two different separation techniques that shock lymph contains two or more factors that may account for the toxicity to endothelial cells. Further investigations are needed to determine the type of RSA modification and the identity of the lipid factors and their role in MODS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available