4.3 Article

Angiotensin-converting enzyme 2 as a novel target for gene therapy for hypertension

Journal

EXPERIMENTAL PHYSIOLOGY
Volume 90, Issue 3, Pages 299-305

Publisher

WILEY
DOI: 10.1113/expphysiol.2004.028522

Keywords

-

Categories

Ask authors/readers for more resources

Less than one-third of patients with hypertension have their blood pressures (BP) controlled with current traditional therapeutic approaches for the treatment and control of hypertension. Pharmacological approaches may have reached a plateau in their effectiveness and thus newer innovative strategies need to be studied not only to increase the number of patients that can achieve BP control, but also to find a way to cure, not just manage, the disease. Continuous advances in gene delivery systems coupled with the completion of the Human Genome Project, now make it possible to investigate genetic means for the treatment and possible cure for hypertension. The renin-angiotensin system (RAS) has long been known to regulate BP, and salt and water metabolism. This system is unique in having both a peripheral circulating system and a tissue-based system. Each of these components have been ascribed a variety of physiological effects that have been associated with not only an increase in BP, but also in a variety of the pathophysiological manifestations associated with hypertension, such as cardiac hypertrophy and kidney dysfunction. We and others have used an antisense gene therapy approach, targeting the classical components of the RAS, to effectively attenuate the development of hypertension and related cardiovascular pathophysiologies in numerous experimental models of hypertension. Recently other components of the RAS have been elucidated and some of these components may be potential targets in a gene therapy approach. This article will focus on angiotensin-converting enzyme 2 (ACE2) as a new, potential target of gene therapy for hypertensive disorders.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available