4.6 Article

One-dimensional density waves of ultracold bosons in an optical lattice -: art. no. 053606

Journal

PHYSICAL REVIEW A
Volume 71, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.71.053606

Keywords

-

Ask authors/readers for more resources

We investigate the propagation of density-wave packets in a Bose-Hubbard model using the adaptive time-dependent density-matrix renormalization group method. We discuss the decay of the amplitude with time and the dependence of the velocity on density, interaction strength, and the height of the perturbation in a numerically exact way, covering arbitrary interactions and amplitudes of the perturbation. In addition, we investigate the effect of self-steepening due to the amplitude dependence of the velocity and discuss the possibilities for an experimental detection of the moving wave packet in time-of-flight pictures. By comparing the sound velocity to theoretical predictions, we determine the limits of a Gross-Pitaevskii- or Bogoliubov-type description and the regime where repulsive one-dimensional Bose gases exhibit fermionic behavior.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available