4.6 Article

Deformation mechanisms in superplastic AA5083 materials

Publisher

SPRINGER
DOI: 10.1007/s11661-005-0217-x

Keywords

-

Ask authors/readers for more resources

The plastic deformation of seven 5083 commercial aluminum materials, produced from five different alloy heats, are evaluated under conditions of interest for superplastic and quick-plastic forming. Two mechanisms are shown to govern plastic deformation in AA5083 over the strain rates, strains, and temperatures of interest for these forming technologies: grain-boundary-sliding (GBS) creep and solute-drag (SD) creep. Quantitative analysis of stress transients following rate changes clearly differentiates between GBS and SD creep and offers conclusive proof that SD creep dominates deformation at fast strain rates and low temperature. Furthermore, stress transients following strain-rate changes under SD creep are observed to decay exponentially with strain. A new graphical construction is proposed for the analysis and prediction of creep transients. This construction predicts the relative size of creep transients under SD creep from the relative size of changes in an applied strain rate or stress. This construction reveals the relative size of creep transients under SD creep to be independent of temperature; temperature dependence resides in the steady-state creep behavior to which transients are related.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available