4.7 Article

Expression of MADS-box genes during the embryonic phase in Arabidopsis

Journal

PLANT MOLECULAR BIOLOGY
Volume 58, Issue 1, Pages 89-107

Publisher

SPRINGER
DOI: 10.1007/s11103-005-4546-3

Keywords

AGL15; AGL18; embryo; FLC; gene family; transcription factor

Ask authors/readers for more resources

MADS domain factors play important roles as developmental regulators in plants. In Arabidopsis thaliana, MADS domain proteins have been shown to regulate various processes during the vegetative and reproductive phases. Relatively little is known, however, about family members expressed during the embryonic phase and their function. To determine which MADS-box genes are expressed during the embryonic phase in Arabidopsis, a family-wide survey involving gene-specific primers and RT-PCR was conducted. Transcripts corresponding to 64 (out of 109 total) family members could be detected in RNA samples isolated from embryonic culture tissue. Eight MADS-box genes that appear to be expressed at higher levels during the embryonic phase than in seedlings or in inflorescence apices were identified. The spatial pattern of expression in developing seeds was characterized for four MADS-box genes (FLOWERING LOCUS C, FLOWERING LOCUS M, AGAMOUS-LIKE 15, and AGAMOUS-LIKE 18) using reporter constructs encoding translational fusions to GUS. All four are expressed in cells throughout the endosperm and embryo. Finally, to test the hypothesis that AGAMOUS-LIKE15 (AGL15) and AGAMOUS-LIKE18 (AGL18) play essential roles during the embryonic phase, plants carrying T-DNA insertions that disrupt these genes were isolated. No embryo defects were observed in agl15 or agl18 single mutants or in agl15agl18 double mutants. These results indicate that multiple regulatory pathways that involve MADS domain factors are likely to operate in embryonic tissues, and that genetic and/or functional redundancy are likely to be as prevalent as in other phases of the life cycle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available