4.4 Article

Overexpression, purification and characterization of SimL, an amide synthetase involved in simocyclinone biosynthesis

Journal

ARCHIVES OF MICROBIOLOGY
Volume 183, Issue 4, Pages 277-285

Publisher

SPRINGER
DOI: 10.1007/s00203-005-0770-0

Keywords

simocyclinone; antibiotic biosynthesis; amide synthetase

Categories

Ask authors/readers for more resources

Simocyclinone D8 is a potent inhibitor of bacterial gyrase, produced by Streptomyces antibioticus Tu 6040. It contains an aminocoumarin moiety, similar to that of novobiocin, which is linked by an amide bond to a structurally complex acyl moiety, consisting of an aromatic angucycline polyketide nucleus, the deoxysugar olivose and a tetraene dicarboxylic acid. We have now investigated the enzyme SimL, responsible for the formation of the amide bond of simocyclinone. The gene was cloned, expressed in S. lividans T7, and the protein was purified to near homogeneity, and characterized. The 60 kDa protein catalyzed both the ATP-dependent activation of the acyl component as well as its transfer to the amino group of the aminocoumarin ring, with no requirement for a 4'-phosphopantetheinyl cofactor. Besides its natural substrate, simocyclinone C4, SimL also accepted a range of cinnamic and benzoic acid derivatives and several other, structurally very diverse acids. These findings make SimL a possible tool for the creation of new aminocoumarin antibiotics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available