4.4 Article

Changes in the spectral and chemical properties of a water mass passing through extensive macrophyte beds in a large fluvial lake (Lake Saint-Pierre, Quebec, Canada)

Journal

AQUATIC SCIENCES
Volume 67, Issue 2, Pages 196-209

Publisher

SPRINGER BASEL AG
DOI: 10.1007/s00027-004-0739-0

Keywords

fluvial lake; Lake Saint-Pierre; macrophyte; light; dissolved organic carbon; UV radiation

Ask authors/readers for more resources

Large fluvial lakes, as part of river corridors, are recognized as spatially heterogeneous ecosystems. Due to their shallowness, the littoral zone of these lakes occupies a large proportion of their surface and is extensively covered by macrophytes that are known to affect their physical, chemical and biological environments in various ways. This study documents the small-scale (5 km) bio-optical variations associated with the longitudinal passage of a water mass through macrophyte beds during their maximal growth season. The utilization of a 2D hydrodynamic model allowed us to establish hydrological connectivity between stations within the beds, and thus to identify longitudinal heterogeneity along the macrophyte beds. Significant changes in the inherent properties of the water were observed along the upstream-downstream gradient. Due to their effects on hydrodynamics, macrophytes were responsible for a decrease in particles and dissolved organic carbon (DOC) resulting in an increasing penetration depth of ultraviolet (UV) and photosynthetically active radiation (PAR). Along the transect, chromophoric dissolved organic matter (CDOM) decreased more rapidly than DOC resulting in a decrease of the CDOM to DOC ratio. The observed changes in the DOC pool may be explained by the constant input of non-chromophoric DOC from macrophyte leachates and exudation within the bed and/or the photochemical and microbial degradation of CDOM. The implication of such small-scale heterogeneity on Lake Saint-Pierre productivity is discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available