4.5 Article

Cephalostatin 1 inactivates Bcl-2 by hyperphosphorylation independent of M-phase arrest and DNA damage

Journal

MOLECULAR PHARMACOLOGY
Volume 67, Issue 5, Pages 1684-1689

Publisher

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/mol.104.004234

Keywords

-

Ask authors/readers for more resources

Cephalostatin 1 is a marine product that induces a novel cytochrome c-independent apoptotic pathway in Jurkat leukemia T cells ( Cancer Res 63: 8869 - 8876, 2003). Here, we show that overexpression of the antiapoptotic protein Bcl-2 protects cells only partially against cephalostatin 1-induced apoptosis. The mechanism of Bcl-2 inactivation by cephalostatin 1 is based on hyperphosphorylation of Bcl-2 on Thr(69) and Ser(87) because Jurkat cells overexpressing a Bcl-2 protein with mutations on both phosphorylation sites were completely protected against cephalostatin 1. In search of the kinase responsible for Bcl-2 phosphorylation, c-Jun NH2-terminal kinase (JNK) was found to be activated by cephalostatin 1. Reduction of Bcl-2 phosphorylation by the specific JNK inhibitor (anthra(1,3-cd)pyrazol-6(2H)-one) SP600125 suggested a crucial role for JNK in this process. JNK activation was not a consequence of DNA damage, a known stimulus of JNK, because cephalostatin 1 did not induce DNA lesions as shown by the comet assay. Arrest in M-phase is also demonstrated to be associated with JNK activation. However, cephalostatin 1 does not evoke an arrest in M-phase as shown by flow cytometry. Together, cephalostatin 1 is shown to induce JNK activation with subsequent Bcl-2 phosphorylation and inactivation. Reported triggers, such as the induction of an M-phase arrest or DNA damage are not involved in this process, suggesting a novel mechanism for cephalostatin 1-mediated Bcl-2 hyperphosphorylation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available