4.4 Article Proceedings Paper

Relativistic attosecond physics

Journal

PHYSICS OF PLASMAS
Volume 12, Issue 5, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.1880032

Keywords

-

Ask authors/readers for more resources

A study, with particle-in-cell simulations, of relativistic nonlinear optics in the regime of tight focus and ultrashort pulse duration (the lambda(3) regime) reveals that synchronized attosecond electromagnetic pulses [N. M. Naumova, J. A. Nees, I. V. Sokolov, B. Hou, and G. A. Mourou, Phys. Rev. Lett. 92, 063902 (2004)] and attosecond electron bunches [N. Naumova, I. Sokolov, J. Nees, A. Maksimchuk, V. Yanovsky, and G. Mourou, Phys. Rev. Lett. 93, 195003 (2004)] emerge efficiently from laser interaction with overdense plasmas. The lambda(3) concept enables a more basic understanding and a more practical implementation of these phenomena because it provides spatial and temporal isolation. The synchronous generation of strong attosecond electromagnetic pulses and dense attosecond electron bunches provides a basis for relativistic attosecond optoelectronics. (c) 2005 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available