4.4 Article

Effect of exercise training on the fatty acid composition of lipid classes in rat liver, skeletal muscle, and adipose tissue

Journal

EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY
Volume 94, Issue 1-2, Pages 84-92

Publisher

SPRINGER
DOI: 10.1007/s00421-004-1294-z

Keywords

carnitine palmitoyltransferase; exercise; fatty acid profile; gastrocnemius; 3-hydroxyacyl CoA dehydrogenase

Ask authors/readers for more resources

The aim of the present study was to examine the effects of 8 weeks of exercise training on the fatty acid composition of phospholipids (PL) and triacylglycerols (TG) in rat liver, skeletal muscle (gastrocnemius medialis), and adipose tissue (epididymal and subcutaneous fat). For this purpose, the relevant tissues of 11 trained rats were compared to those of 14 untrained ones. Training caused several significant differences of large effect size in the concentrations and percentages of individual fatty acids in the aforementioned lipid classes. The fatty acid composition of liver PL, in terms of both concentrations and percentages, changed with training. The TG content of muscle and subcutaneous adipose tissue decreased significantly with training. In contrast to the liver, where no significant differences in the fatty acid profile of TG were found, muscle underwent more significant differences in TG than PL, and adipose tissue only in TG. Most differences were in the same direction in muscle and adipose tissue TG, suggesting a common underlying mechanism. Estimated fatty acid elongase activity was significantly higher, whereas Delta(9)-desaturase activity was significantly lower in muscle and adipose tissue of the trained rats. In conclusion, exercise training modified the fatty acid composition of liver PL, muscle PL and TG, as well as adipose tissue TG. These findings may aid in delineating the effects of exercise on biological functions such as membrane properties, cell signaling, and gene expression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available