4.8 Article

Effect of glass composition on the degradation properties and ion release characteristics of phosphate glass - polycaprolactone composites

Journal

BIOMATERIALS
Volume 26, Issue 15, Pages 2209-2218

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2004.07.016

Keywords

glass; composite; degradation; polycaprolactone

Ask authors/readers for more resources

A series of polycaprolactone and ternary-based (Na(2)O)0.55-x(CaO),(P(2)O(5))(0.45) glass composites were created, each containing 20% volume percentage of glass with various calcium compositions. A short-term degradation study was carried out to investigate the physical and ion release behaviour of these composites, utilising analytical techniques such as dynamical mechanical analysis, and ion chromatoaraphy. All the composites experienced significant loss of weight and stiffness throughout the study, with the 24 mol% calcium composites losing the greatest amount of weight and stiffness. The pH profile of the aqueous solutions in which the composites were placed were initially acidic, but began to neutralise mid-way through the study, with the 36 mol% solution achieving the most acidic conditions. The ion release behaviour mirrored the mass loss behaviour of the glass component of the composites. The cations (sodium and calcium ions) release was comparable with the initial stages of composite mass degradation, both of which exhibited almost immediate release when placed into solution. The 24 mol% composites underwent rapid rates of cation release, while the 36 mol% experienced the slowest rates of release. By contrast, anion (phosphates and polyphosphates) release showed a dissimilar trend, with rapid release of the P(2)O(7) and P(3)O(10) occurring during the first few hours in solution, whilst the P(3)O(9) structure released steadily during the first 48 h in solution. Finally, PO(4) release was at a constant rate over the duration of the study, releasing up to 300 ppm from the 32 and 36 mol% samples by the end of 200 h. To summarise, these results show that by combining phosphate glasses with biodegradable polymer, it is possible to create composites whose rate of degradation can be controlled to meet the needs of their end application. (C) 2004 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available