4.2 Article

GPR data noise attenuation on the curvelet transform

Journal

APPLIED GEOPHYSICS
Volume 11, Issue 3, Pages 301-310

Publisher

SPRINGER
DOI: 10.1007/s11770-014-0444-2

Keywords

Signal extraction; background noise; curvelet transform; threshold value; noise attenuation

Funding

  1. National Natural Science Foundation
  2. China Postdoctoral Science Foundation

Ask authors/readers for more resources

Signal extraction is critical in GRP data processing and noise attenuation. When the target depth is shallow, its reflection echo signal will overlap with the background noise, affecting the detection of arrival time and localization of the target. Thus, we propose a noise attenuation method based on the curvelet transform. First, the original signal is transformed into the curvelet domain, and then the curvelet coefficients of the background noise are extracted according to the distribution features that differ from the effective signal. In the curvelet domain, the coarse-scale curvelet atom is isotropic. Hence, a two-dimensional directional filter is designed to estimate the high-energy background noise in the coarse-scale domain, and then, attenuate the background noise and highlight the effective signal. In this process, we also use a subscale threshold value of the curvelet domain to filter out random noise. Finally, we compare the proposed method with the average elimination and 2D continuous wavelet transform methods. The results show that the proposed method not only removes the background noise but also eliminates the coherent interference and random noise. The numerical simulation and the real data application suggest and verify the feasibility and effectiveness of the proposed method.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available