4.8 Article

Hydrolytic enzyme activities of extracted humic substances during the vermicomposting of a lignocellulosic olive waste

Journal

BIORESOURCE TECHNOLOGY
Volume 96, Issue 7, Pages 785-790

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2004.08.010

Keywords

olive waste; biosolids; vermicomposting; extracellular hydrolytic enzymes; dehydrogenase activity; humic substances; enzymatically active humus

Ask authors/readers for more resources

Humic substances and three hydrolytic enzymes (beta-glucosidase, phosphatase and urease) were extracted by neutral sodium pyrophosphate from an olive waste (dry olive cake), alone or mixed with municipal biosolids, during a nine month vermicomposting process. Easily degradable compounds decreased during the vermicomposting process because of microbial consumption. When municipal biosolids were added to dry olive cake, microbial activity increased and the amounts of compounds extracted by pyrophosphate were three times lower than olive cake alone. In both instances, beta-glucosidase, phosphatase and urease activities of the organic extracts either increased or remained the same after a nine month period of vermicomposting, thus suggesting that the humus enzyme complexes resisted microbial and earthworm attack. It is known that humus immobilised enzymes also remain active in soil environments, reactivating the nutrient cycles in soil. The use as amendments of vermicomposted olive cake, alone or when mixed with biosolids, could be a good alternative to reactivate the C, P and N-cycles in degraded soils for regeneration purposes. (C) 2004 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available