4.6 Article

Wave-equation migration velocity analysis by focusing diffractions and reflections

Journal

GEOPHYSICS
Volume 70, Issue 3, Pages U19-U27

Publisher

SOC EXPLORATION GEOPHYSICISTS
DOI: 10.1190/1.1925749

Keywords

-

Ask authors/readers for more resources

We propose a method for estimating interval velocity using the kinematic information in defocused diffractions and reflections. We extract velocity information from defocused migrated events by analyzing their residual focusing in physical space (depth and midpoint) using prestack residual migration. The results of this residual-focusing analysis are fed to a linearized inversion procedure that produces interval velocity updates. Our inversion procedure uses a wavefield-continuation operator linking perturbations of interval velocities to perturbations of migrated images, based on the principles of wave-equation migration velocity analysis introduced in recent years. We measure the accuracy of the migration velocity using a diffraction-focusing criterion instead of the criterion of flatness of migrated common-image gathers that is commonly used in migration velocity analysis. This new criterion enables us to extract velocity information from events that would be challenging to use with conventional velocity analysis methods; thus, our method is a powerful complement to those conventional techniques. We demonstrate the effectiveness of the proposed methodology using two examples. In the first example, we estimate interval velocity above a rugose salt top interface by using only the information contained in defocused diffracted and reflected events present in zero-offset data. By comparing the results of full prestack depth migration before and after the velocity updating, we confirm that our analysis of the diffracted events improves the velocity model. In the second example, we estimate the migration velocity function for a 2D, zero-offset, ground-penetrating radar data set. Depth migration after the velocity estimation improves the continuity of reflectors while focusing the diffracted energy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available