4.5 Article

Simultaneous oxidation of arsenic and antimony at low and circumneutral pH, with and without microbial catalysis

Journal

APPLIED GEOCHEMISTRY
Volume 27, Issue 1, Pages 281-291

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.apgeochem.2011.09.002

Keywords

-

Funding

  1. Spanish Government [REN 2003-09590-C04-02]

Ask authors/readers for more resources

Arsenic and Sb are common mine-water pollutants and their toxicity and fate are strongly influenced by redox processes. In this study, simultaneous Fe(II), As(III) and Sb(III) oxidation experiments were conducted to obtain rates under laboratory conditions similar to those found in the field for mine waters of both low and circumneutral pH. Additional experiments were performed under abiotic sterile conditions to determine the biotic and abiotic contributions to the oxidation processes. The results showed that under abiotic conditions in aerated Fe(III)-H2SO4 solutions, Sb(III) oxidizes slightly faster than As(III). The oxidation rates of both elements were accelerated by increasing As(III), Sb(III), Fe(III), and Cl concentrations in the presence of light. For unfiltered circumneutral water from the Giant Mine (Yellowknife, NWT, Canada), As(III) oxidized at 15-78 mu mol/L/h whereas Sb(III) oxidized at 0.03-0.05 mu mol/L/h during microbial exponential growth. In contrast, As(III) and Sb(III) oxidation rates of 0.01-0.03 and 0.01-0.02 mu mol/L/h, respectively, were obtained in experiments performed with acid unfiltered mine waters from the Iberian Pyritic Belt (SW Spain). These results suggest that the Fe(III) formed from microbial oxidation abiotically oxidized As(III) and Sb(III). After sterile filtration of both mine water samples, neither As(III), Sb(III), nor Fe(II) oxidation was observed. Hence, under the experimental conditions, bacteria were catalyzing As and Sb oxidation in the Giant Mine waters and Fe oxidation in the acid waters of the Iberian Pyrite Belt. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available