4.6 Article

Face recognition and cortical responses show similar sensitivity to noise spatial frequency

Journal

CEREBRAL CORTEX
Volume 15, Issue 5, Pages 526-534

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/cercor/bhh152

Keywords

cortex; face; human; MEG; recognition; visual

Categories

Ask authors/readers for more resources

To find cortical correlates of face recognition, we manipulated the recognizability of face images in a parametric manner by masking them with narrow-band spatial noise. Face recognition performance was best at the lowest and highest noise spatial frequencies (NSFs, 2 and 45 c/image, respectively), and degraded gradually towards central NSFs (11-16 c/image). The strength of the 130-180 ms neuromagnetic response (M170) in the temporo-occipital cortex paralleled the recognition performance, whereas the mid-occipital response at 70-120 ms acted in the opposite manner, being strongest for the central NSFs. To noise stimuli without faces, M170 was small and rather insensitive to NSF, whereas the mid-occipital responses resembled closely the responses to the combined face and noise stimuli. These results suggest that the 100 ms mid-occipital response is sensitive to the central spatial frequencies that are critical for face recognition, whereas the M170 response is sensitive to the visibility of a face and closely related to face recognition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available