4.3 Article

High-efficiency p-i-n organic light-emitting diodes with long lifetime

Journal

JOURNAL OF THE SOCIETY FOR INFORMATION DISPLAY
Volume 13, Issue 5, Pages 393-397

Publisher

WILEY
DOI: 10.1889/1.1927730

Keywords

doped PIN; high efficiency; low operating voltage; stability; lifetime; top emission; dopand

Ask authors/readers for more resources

High-performance organic light-emitting diodes (OLEDs) are promoting future applications of solid-state lighting and flat-panel displays. We demonstrate here that the performance demands for OLEDs are met by the PIN (p-doped hole-transport layer/intrinsically conductive emission layer/n-doped electron-transport layer) approach. This approach enables high current efficiency, low driving voltage, as well as long OLED lifetimes. Data on very-high-efficiency diodes (power efficiencies exceeding 70 lm/W) incorporating a double-emission layer, comprised of two bipolar layers doped with tris(phenylpyridine)iridium [Ir(ppy)(3)], into the PIN architecture are shown. Lifetimes of more than 220,000 hours at a brightness of 150 cd/m(2) are reported for a red PIN diode. The PIN approach further allows the integration of highly efficient top-emitting diodes on a wide range of substrates. This is an important factor, especially for display applications where the compatibility of PIN OLEDs with various kinds of substrates is a key advantage. The PIN concept is very compatible with different backplanes, including passive-matrix substrates as well as active-matrix substrates on low-temperature polysilicon (LTPS) or, in particular, amorphous silicon (a- Si).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available