4.5 Article

Cohesive models for damage evolution in laminated composites

Journal

INTERNATIONAL JOURNAL OF FRACTURE
Volume 133, Issue 2, Pages 107-137

Publisher

SPRINGER
DOI: 10.1007/s10704-005-4729-6

Keywords

bridged crack; cohesive model; composite; delamination; fracture

Ask authors/readers for more resources

A trend in the last decade towards models in which nonlinear crack tip processes are represented explicitly, rather than being assigned to a point process at the crack tip (as in linear elastic fracture mechanics), is reviewed by a survey of the literature. A good compromise between computational efficiency and physical reality seems to be the cohesive zone formulation, which collapses the effect of the nonlinear crack process zone onto a surface of displacement discontinuity (generalized crack). Damage mechanisms that can be represented by cohesive models include delamination of plies, large splitting (shear) cracks within plies, multiple matrix cracking within plies, fiber rupture or microbuckling (kink band formation), friction acting between delaminated plies, process zones at crack tips representing crazing or other nonlinearity, and large scale bridging by through-thickness reinforcement or oblique crack-bridging fibers. The power of the technique is illustrated here for delamination and splitting cracks in laminates. A cohesive element is presented for simulating three-dimensional, mode-dependent process zones. An essential feature of the formulation is that the delamination crack shape can follow its natural evolution, according to the evolving mode conditions calculated within the simulation. But in numerical work, care must be taken that element sizes are defined consistently with the characteristic lengths of cohesive zones that are implied by the chosen cohesive laws. Qualitatively successful applications are reported to some practical problems in composite engineering, which cannot be adequately analyzed by conventional tools such as linear elastic fracture mechanics and the virtual crack closure technique. The simulations successfully reproduce experimentally measured crack shapes that have been reported in the literature over a decade ago, but have not been reproduced by prior models.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available