4.7 Article

Scale-up effect of riser reactors (3) axial and radial solids flux distribution and flow development

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 109, Issue 1-3, Pages 97-106

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2005.03.017

Keywords

scale-up; hydrodynamics; fluidization; powder technology; flow development; solids flux

Ask authors/readers for more resources

The influence of riser diameter on the axial and radial solids flux and flow development is studied in three riser circulating fluidized bed reactors of different diameters (76, 100 and 203 mm i.d. risers). A suction probe was used for the direct measurement, while the calculated local solids flux data obtained from solids velocity and concentration measured by two separate fibre optic probes were used to compare. Two shapes were found for the radial profile of the solids flux, a parabolic shape and a flat core shape. The shapes obtained could be predicted, based on the operating conditions, using a new concept of the effective solids saturation carrying capacity. The radial profile of solids flux is less uniform in a larger riser than in a smaller riser. Flow development is slower with the increase of riser diameter. The operating conditions were found to affect the solids flux in each reactor in the same general fashion: increasing gas velocity decreased the amount of downflow solids in the risers; increases in the solids circulation rate caused more solids to flow downwards. (c) 2005 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available