4.6 Article

Pigment epithelium-derived factor induces pro-inflammatory genes in neonatal Astrocytes through activation of NF-κB and CREB

Journal

GLIA
Volume 50, Issue 3, Pages 223-234

Publisher

WILEY
DOI: 10.1002/glia.20171

Keywords

cytokines; glial cells; chemokines; inflammation

Categories

Ask authors/readers for more resources

Pigment epithelium-derived factor (PEPDF) is a potent and broadly acting neurotrophic factor that protects neurons in various types of cultured neurons against glutamate excitotoxicity and induced-apoptosis. Some of the effects of PEDF reflect specific changes in gene expression, mediated via activation of the transcription factor NF-kappa B in neurons. To investigate whether PEDF also modulates gene expression in astrocytes, we employed the use of RT-PCR to analyze the gene expression of certain pro-inflammatory genes and found that genes such as IL-1 beta, IL-6, TNF-alpha, MIP1 alpha, and MIP3 alpha were induced in PEDF-treated cultured neonatal astrocytes, but not in adult astrocytes. Electrophoresis mobility shift assay (EMSA) revealed that a time- and dose-dependent increase of NF-kappa B- and AP-1-DNA binding activity was observed in PEDF-treated neonatal astrocytes. Furthermore, rapid phosphorylation of CREB protein had occurred in PEDF-treated neonatal astrocytes. Upregulation of pro-inflammatory and AP-1-related genes by PEDF was blocked by overexpression of dominant negative CREB or a mutated form of I kappa B alpha. These results suggest that the induction of pro-inflammatory genes is mediated via activation of NF-kappa B, AP-1, and CREB in neonatal astrocytes. Taken together, these results demonstrate that PEDF is a multipotent factor, capable of affecting not only neurons, but also neonatal astrocytes, and suggests that it may act as a neuroimmune modulator in the developmental brain. (c) 2005 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available