4.7 Article

HYL1 gene maintains venation and polarity of leaves

Journal

PLANTA
Volume 221, Issue 2, Pages 231-242

Publisher

SPRINGER
DOI: 10.1007/s00425-004-1439-7

Keywords

Arabidopsis; hyl1 (hyponastic leaves1); leaf curvature; microRNA; polarity; venation

Categories

Ask authors/readers for more resources

For genetic analysis of the mechanism of leaf curvature, we chose hyl1 mutant of Arabidopsis as a model for dissection of leaf venation pattern and adaxial/abaxial polarity. In leaves of hyl1 mutants that were hyponastic and curved upward, the complexity of the secondary veins was reduced, and the discontinuity of veins increased. In the lateral areas of the leaves where transverse curvature arises, dorsoventral polarity was lost due to the unclear spongy cells, and the epidermal cells became smaller on the adaxial surface than those of the abaxial surface, whereas the number of epidermal cells on the two surfaces were almost the same. In this case, less complexity of venation, decreased cell growth on the adaxial surface was attributed to leaf curvature. To depict the role of HYL1 in leaf venation and polarity, we constructed pHYL1:: GUS to drive the uidA (beta-glucuronidase) gene, and observed that the GUS signal appeared primarily in the petioles and mid-veins of rosette leaves, and were restricted to vascular tissues, demonstrating that HYL1 promoter directs the process of leaf venation by the uneven expression of the HYL1 gene in leaves. In situ hybridization indicates that HYL1 gene is preferentially expressed in leaf blades as well as vasculature. In curved leaves of hyl1 mutants, the expression level of adaxial identity gene REV was increased and the expression position restricted mainly in vasculature and on both sides of growing leaves near the margins while expression of the miR165 gene was remarkably reduced, suggesting that HYL1 maintain venation and polarity of growing leaves by altering the level of microRNA that direct the cleavage of REV transcripts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available