4.4 Article Proceedings Paper

Investigation of the winding current distribution in a 4-quadrant-transducer prototype machine

Journal

IEEE TRANSACTIONS ON MAGNETICS
Volume 41, Issue 5, Pages 1972-1975

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMAG.2005.846279

Keywords

copper loss; current distribution; eddy current; 4-quadrant transducer

Ask authors/readers for more resources

The 4-quadrant energy transducer (4QT) is a solution to realize both the torque and speed control of the internal combustion engine (ICE) for hybrid electric vehicles. Since the base frequency of the prototype 4QT is much higher than the industrial one, the effect of eddy current on winding current distribution is considered in this paper. A two-dimensional (2-D) eddy-current FEM model is established and used for analysis. Current density and strand current distribution are given. It is pointed out that owing to the effect of eddy current, the conductor currents are unevenly distributed within the strands of the same turn. According to the 2-D FEM analysis, when the uneven current distribution is considered, the average rms turn current is increased by 1.05 times for the stator and 1.65 times for the inner rotor, and the copper loss is increased by 1.1 times for the stator and 3.16 times for the inner rotor. Since the inner rotor slots are much deeper than the stator slots, the inner rotor current distribution is more uneven than the stator. It means that for high-frequency deep slot machine the eddy current effect should be considered seriously. Because of the increased current and copper loss, more ventilation will be needed for the 4QT, especially for the inner rotor. The average torques of stator machine and double rotor machine meet the requirements, and the torque ripples are small owing to the skewed slots.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available