4.7 Article

An efficient method for solving the Signorini problem in the simulation of free-form surfaces produced by belt grinding

Journal

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ijmachtools.2004.10.006

Keywords

belt grinding; finite element method; simulation; support vector regression

Ask authors/readers for more resources

Industrial robots are recently introduced to the belt grinding of free-form surfaces to obtain high productive efficiency and constant surface quality. The simulation of belt grinding process can facilitate planning grinding paths and writing robotic programs before manufacturing. In simulation, it is crucial to get the force distribution in the contact area between the workpiece and the elastic contact wheel because the uneven distributed local forces are the main reason to the unequal local removals on the grated surface. The traditional way is to simplify this contact problem as a Signorini contact problem and use the finite element method (FEM) to calculate the force distribution. However, the FEM model is too computationally expensive to meet the real-time requirement. A new model based on support vector regression (SVR) technique is developed in this paper to calculate the force distribution instead of the FEM model. The new model approximates the FEM model with an error smaller than 5%, but executes much faster (1 s vs 15 min by FEM). With this new model, the real-time simulation and even the on-line robot control of grinding processes can be further conducted. (c) 2004 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available