4.7 Article

Activation of the Arp2/3 complex by N-WASp is required for actin polymerization and contraction in smooth muscle

Journal

AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY
Volume 288, Issue 5, Pages C1145-C1160

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpcell.00387.2004

Keywords

Wiskott-Aldrich syndrome protein; actin-related protein; tracheal muscle; cytoskeleton

Funding

  1. NHLBI NIH HHS [HL-074099, HL-29289, R01 HL074099-03, R01 HL029289, R01 HL029289-19, R01 HL074099] Funding Source: Medline

Ask authors/readers for more resources

Contractile stimulation has been shown to initiate actin polymerization in smooth muscle tissues, and this actin polymerization is required for active tension development. We evaluated whether neuronal Wiskott-Aldrich syndrome protein (N-WASp)-mediated activation of the actin-related proteins 2 and 3 (Arp2/3) complex regulates actin polymerization and tension development initiated by muscarinic stimulation in canine tracheal smooth muscle tissues. In vitro, the COOH-terminal CA domain of N-WASp acts as an inhibitor of N-WASp-mediated actin polymerization; whereas the COOH-terminal VCA domain of N-WASp is constitutively active and is sufficient by itself to catalyze actin polymerization. Plasmids encoding EGFP-tagged wild-type N-WASp, the N-WASp VCA and CA domains, or enhanced green fluorescent protein (EGFP) were introduced into tracheal smooth muscle strips by reversible permeabilization, and the tissues were incubated for 2 days to allow for expression of the proteins. Expression of the CA domain inhibited actin polymerization and tension development in response to ACh, whereas expression of the wild-type N-WASp, the VCA domain, or EGFP did not. The increase in myosin light-chain (MLC) phosphorylation in response to contractile stimulation was not affected by expression of either the CA or VCA domain of N-WASp. Stimulation of the tissues with ACh increased the association of the Arp2/3 complex with N-WASp, and this association was inhibited by expression of the CA domain. The results demonstrate that 1) N-WASp-mediated activation of the Arp2/3 complex is necessary for actin polymerization and tension development in response to muscarinic stimulation in tracheal smooth muscle and 2) these effects are independent of the regulation of MLC phosphorylation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available