4.7 Article

Decomposition of leaves of the metallophyte Arabidopsis halleri in soil microcosms:: fate of Zn and Cd from plant residues

Journal

ENVIRONMENTAL POLLUTION
Volume 135, Issue 2, Pages 323-332

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2004.07.031

Keywords

metals; biodegradation; speciation; metallophyte; soil fractionation

Ask authors/readers for more resources

in order to better understand the fate of metals during the biodegradation of organic matter in soils, an in vitro incubation experiment was conducted with metal-rich and metal-free leaves of Arabidopsis halleri introduced in a non-contaminated soil. During incubation of these microcosms, we followed the partitioning of Zn and Cd between the Solution and their solid components, by determining the metal contents of six soil fractions and dissolved metals after granulo-densimetric separations at selected times. Microbial biomass and exchangeable metals in K2SO4 solutions were also determined at the same times, and two main stages were identified. The first one takes place after a fast abiotic transfer of Zn and Cd from readily soluble plant tissues onto fine soil constituents, keeping metals away from the liquid phase: during about 14 days, microbial biomass increased as well as metal contents of some soil fractions, particularly those rich in particulate organic matter. During the second stage, between 14 and 60 days and for the metal-rich microcosms, Zn and Cd contents in solution increased, while microbial biomass decreased instead of staying constant as in control. A change of Zn and Cd speciation is assumed, from non-toxic adsorbed forms to more toxic species in solution. Remaining metal-rich plant residues seem to create a stable organic C compartment in the soil. (c) 2004 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available