4.4 Article

Human mitochondrial TyrRS disobeys the tyrosine identity rules

Journal

RNA
Volume 11, Issue 5, Pages 558-562

Publisher

COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT
DOI: 10.1261/rna.7246805

Keywords

tRNA identity; cross-species aminoacylation; phylogeny; tRNA acceptor stem; tyrosylation

Ask authors/readers for more resources

Human tyrosyl-tRNA synthetase from mitochondria (mt-TyrRS) presents dual sequence features characteristic of eubacterial and archaeal TyrRSs, especially in the region containing amino acids recognizing the N1-N72 tyrosine identity pair. This would imply that human mt-TyrRS has lost the capacity to discriminate between the G1-C72 pair typical of eubacterial and mitochondrial tRNA(Tyr) and the reverse pair C1-G72 present in archaeal and eukaryal tRNA(Tyr). This expectation was verified by a functional analysis of wild-type or mutated tRNATyr molecules, showing that mt-TyrRS aminoacylates with similar catalytic efficiency its cognate tRNA(Tyr) with G1-C72 and its mutated version with C1-G72. This provides the first example of a TyrRS lacking specificity toward N1-N72 and thus of a TyrRS disobeying the identity rules. Sequence comparisons of mt-TyrRSs across phylogeny suggest that the functional behavior of the human mt-TyrRS is conserved among all vertebrate mt-TyrRSs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available