4.6 Article

Criteria for exact qudit universality

Journal

PHYSICAL REVIEW A
Volume 71, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.71.052318

Keywords

-

Ask authors/readers for more resources

We describe criteria for implementation of quantum computation in qudits. A qudit is a d-dimensional system whose Hilbert space is spanned by states \0 >, \1 >, ..., \d-1 >. An important earlier work [A. Muthukrishnan and C.R. Stroud, Jr., Phys. Rev. A 62, 052309 (2000)] describes how to exactly simulate an arbitrary unitary on multiple qudits using a 2d-1 parameter family of single qudit and two qudit gates. That technique is based on the spectral decomposition of unitaries. Here we generalize this argument to show that exact universality follows given a discrete set of single qudit Hamiltonians and one two-qudit Hamiltonian. The technique is related to the QR-matrix decomposition of numerical linear algebra. We consider a generic physical system in which the single qudit Hamiltonians are a small collection of H-jk(x) = (h) over bar Omega(\k][j\+\j][k\) and H-jk(y) = (h) over bar Omega(i\k][j\-i\j][k\). A coupling graph results taking nodes 0,..., d-1 and edges j <-> k iff H-jk(x,y) are allowed Hamiltonians. One qudit exact universality follows iff this graph is connected, and complete universality results if the two-qudit Hamiltonian H=(h) over bar Omega\d-1, d-1][d-1, d-1\ is also allowed. We discuss implementation in the eight dimensional ground electronic states of Rb-87 and construct an optimal gate sequence using Raman laser pulses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available