4.6 Article

Room-temperature resonant tunneling of electrons in carbon nanotube junction quantum wells

Journal

APPLIED PHYSICS LETTERS
Volume 86, Issue 18, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1915528

Keywords

-

Ask authors/readers for more resources

Resonant tunneling structures [M. Bockrath, W. Liang, D. Bozovic, J. H. Hafner, C. B. Lieber, M. Tinkham, and H. Park, Science 291, 283 (2001)], formed between the junction of two single walled nanotubes and the conductive atomic force microscopy tip contact were investigated using current sensing atomic force microscopy. Oscillations in the current voltage characteristics were measured at several positions of the investigated nanotube. The oscillatory behavior is shown to follow a simple quantum mechanical model, dependent on the energy separation in the quantum well formed within the two junctions. Our model shows that these observations seen over several hundreds of nanometers, are possible only if the scattering cross section at defects is small resulting in long phase coherence length, and if the effective mass of the carrier electrons is small. We have calculated the approximate mass of the conduction electrons to be 0.003 m(e). (c) 2005 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available