4.8 Article

Epistasis and balanced polymorphism influencing complex trait variation

Journal

NATURE
Volume 435, Issue 7038, Pages 95-98

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature03480

Keywords

-

Ask authors/readers for more resources

Complex traits such as human disease, growth rate, or crop yield are polygenic, or determined by the contributions from numerous genes in a quantitative manner. Although progress has been made in identifying major quantitative trait loci (QTL), experimental constraints have limited our knowledge of small-effect QTL, which may be responsible for a large proportion of trait variation(1-3). Here, we identified and dissected a one-centimorgan chromosome interval in Arabidopsis thaliana without regard to its effect on growth rate, and examined the signature of historical sequence polymorphism among Arabidopsis accessions. We found that the interval contained two growth rate QTL within 210 kilobases. Both QTL showed epistasis; that is, their phenotypic effects depended on the genetic background. This amount of complexity in such a small area suggests a highly polygenic architecture of quantitative variation, much more than previously documented(4). One QTL was limited to a single gene. The gene in question displayed a nucleotide signature indicative of balancing selection, and its phenotypic effects are reversed depending on genetic background. If this region typifies many complex trait loci, then non-neutral epistatic polymorphism may be an important contributor to genetic variation in complex traits.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available