4.5 Article

Catalytic properties of glutathione-binding residues in a τ class glutathione transferase (PtGSTU1) from Pinus tabulaeformis

Journal

FEBS LETTERS
Volume 579, Issue 12, Pages 2657-2662

Publisher

WILEY
DOI: 10.1016/j.febslet.2005.03.086

Keywords

enzyme assay; glutathione transferase; glutathione-binding site; pine; site-directed mutagenesis

Ask authors/readers for more resources

Glutathione transferases (GSTs) play important roles in stress tolerance and detoxification in plants. However, there is extremely little information on the molecular characteristics of GSTs in gymnosperms. In a previous study, we cloned a tau class GST (PtGSTU1) from a gymnosperm (Pinus tabulaeformis) for the first time. Based on the N-terminal amino acid sequence identity to the available crystal structures of plant tau GSTs, Ser13, Lys40, Ile54, Glu66 and Ser67 of PtGSTU1 were proposed as glutathione-bin ding (G-site) residues. The importance of Ser13 as a G-site residue was investigated previously. The functions of Lys40, 1164, Glu66 and Ser67 of PtGSTU1 are examined in this study through site-directed mutagenesis. Enzyme assays and thermal stability measurements on the purified recombinant PtGSTU1 showed that substitution at each of these sites significantly affects the enzyme's substrate specificity and affinity for GSH, and these residues are essential for maintaining the stability of PtGSTU1. The results of protein expression and refolding analyses suggest that He54 is involved in the protein folding process. The findings demonstrate that the aforementioned residues are critical components of active sites that contribute to the enzyme's catalytic activity and structural stability. (c) 2005 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available