4.6 Article

Misfit dislocations in nanoscale ferroelectric heterostructures

Journal

APPLIED PHYSICS LETTERS
Volume 86, Issue 19, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1922579

Keywords

-

Ask authors/readers for more resources

We present a quantitative study of the thickness dependence of the polarization and piezoelectric properties in epitaxial (001) PbZr0.52Ti0.48O3 films grown on (001) SrRuO3-buffered (001) SrTiO3 substrates. High-resolution transmission electron microscopy reveals that even the thinnest films (similar to 8 nm) are fully relaxed with a dislocation density close to 10(12) cm(-2) and a spacing of approximately 12 nm. Quantitative piezoelectric and ferroelectric measurements show a drastic degradation in the out-of-plane piezoelectric constant (d(33)) and the switched polarization (DP) as a function of decreasing thickness. In contrast, lattice-matched ultrathin PbZr0.2Ti0.8O3 films that have a very low dislocation density show superior ferroelectric properties. Supporting theoretical calculations show that the variations in the strain field around the core of the dislocation leads to highly localized polarization gradients and hence strong depolarizing fields, which result in suppression of ferroelectricity in the vicinity of a dislocation. (c) 2005 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available