4.6 Article

FT-IR study of the interlamellar water confined in glycolipid nanotube walls

Journal

LANGMUIR
Volume 21, Issue 10, Pages 4610-4614

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la046906q

Keywords

-

Ask authors/readers for more resources

The local hydrogen-bonding environment of water confined in glycolipid nanotubes (LNTs) was investigated by Fourier transform infrared (FT-IR) spectroscopy. Using X-ray diffraction (XRD), we estimated the thickness of an interlamellar water layer, which was confined between the bilayer membranes constructing the walls of the LNTs, to be 1.3 +/- 0.3 nm. FT-IR spectroscopic measurement of the confined water showed an obvious reduction in IR absorption in both the low-energy (around 3000 cm(-1)) and high-energy regions (around 3600 cm(-1)) of the OH stretching band as compared to bulk water. The reduction around 3000 cm(-1) indicated a decrease in the relative proportion of the water molecules with a long-range network structure due to a geometrical restriction. This agrees with the results obtained for other multilamellar systems. On the other hand, the remarkable reduction around 3600 cm(-1), which was not observed in the other systems, indicated the absence of weakly hydrogen-bonded water aggregates due to the effect of sugar headgroups.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available