4.8 Article

Ab initio molecular dynamics and quasichemical study of H+(aq)

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0408071102

Keywords

eigen cation; zundel cation

Ask authors/readers for more resources

The excess proton in water, H+(aq), plays a fundamental role in aqueous solution chemistry. Its solution thermodynamic properties are essential to molecular descriptions of that chemistry and for validation of dynamical calculations. Within the quasichemical theory of solutions those thermodynamic properties are conditional on recognizing underlying solution structures. The quasichemical treatment identifies H3O+ and H2O5+ as natural inner-shell complexes, corresponding to the cases of n = 1, 2 water molecule ligands, respectively, of a distinguished H+ ion. A quantum-mechanical treatment of the inner-shell complex with both a dielectric continuum and a classical molecular dynamics treatment of the outer-shell contribution identifies the latter case (the Zundel complex) as the more numerous species. Ab initio molecular dynamics simulations, with two different electron density functionals, suggest a preponderance of Zundel-like structures, but a symmetrical ideal Zundel cation is not observed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available