4.5 Article

Computational study of the adsorption energetics and vibrational wavenumbers of NH3 adsorbed on the Ni(111) surface

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 109, Issue 18, Pages 8954-8960

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp044326w

Keywords

-

Ask authors/readers for more resources

The structure and stabilities of NH3 adsorbed on different sites of a Ni(111) surface are compared based on density functional, plane-waves calculations within a periodic framework. The surface has been modeled by 4- and 5-layer slabs with 2 x 2 and 3 x 3 unit cells. Calculated results are in good agreement with available experimental data, confirming the atop adsorption site to be the most favorable, with no preferred azimuthal orientation for the H atoms. For NH3 adsorbed at the atop site, the one-dimensional potential energy profiles along the N-H and N-Ni bonds and the coupling between adjacent N-H bond oscillators have been calculated and fitted to an analytical expression using an accurate anharmonic potential model. Variational calculations have been performed to obtain frequencies for the N-H and N-Ni stretching vibrations and N-H stretching line widths. The model for calculating line widths has also been tested with CO adsorbed at the hcp hollow of the Ni(111) surface.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available